
A model of population dynamics in phonetic change

Introduction The idea that phonetic change is driven by the gradual accumulation of error goes back
to at least the Neogrammarians [5]. However, as famously noted by Weinrich et al. [9], this type of
account is problematic in that it predicts change far more often than is actually observed. Nonethe-
less, many computational models of phonetic change continue to assume, implicitly or explicitly, the
Neogrammarian position [3, 6, 8], cf. [1, 2]. Here, we explore the effects of different assumptions
regarding prior bias and population structure on the actuation and evolution of sound patterns. In
particular, we consider population-level models that allow for considerable variability in the social
network: which teachers individuals learn from. In a case study of the emergence of vowel harmony
through phonologization of vowel-to-vowel coarticulation [4], we demonstrate that both stability and
phonologization can emerge as attractor states, but only under certain assumptions about the prior
bias of the learners.

Models We consider a language with a simple lexicon Σ = {/a/, /e/, /aCe/}, assuming that the distri-
butions of /a/ and /e/ are known to all learners, are the same for all learners, and do not change over
time. The relevant dimension of variation here is F1: the distribution of F1 for /a/ in the context of /e/
(i.e. /aCe/) differs from that of /a/ only by an offset to the mean p, indicating how much /a/ is affected
by coarticulation in the /e/ context. Given a list of training examples ~y, learner’s task is then simply
to infer this parameter p, which at the outset we assume is normally distributed in the population.

Results We first considered the dynamics of a maximum-likelihood (ML) learner under two social
learning scenarios: one in which each learner’s data is provided by a single teacher (Fig. 2b), and
one in which the data may be drawn from multiple teachers (Fig. 2c). Both scenarios allow for more
complex and (arguably) realistic dynamics than the iterated learning structures (Fig. 2a) commonly
assumed in computational studies of sound change (e.g. [3]). In both instances, the population mean
of the coarticulation parameter p is stable over generations, but the standard deviation increases by an
amount inversely proportional to the number of training examples received. This suggests that ML
learning directly from data is indeed empirically inadequate, as argued by [1, 6].

Figure 1: Quadratic prior over P (p).
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Next, we considered two scenarios in which learners have a prior
distribution over p. In the first scenario, we assumed a Gaus-
sian prior α ∼ Nx(0, τ 2) which increasingly disfavors values of
p greater than 0. For both single and multiple teachers, the expec-
tation and variance of p move towards 0 and a fixed attractor α∗
respectively, with α∗ → 0 as n → ∞. Thus, the Gaussian prior
predicts learners should never phonologize the effects of coarticu-
lation, regardless of the how strongly this is indicated by the input.
In the second scenario, we considered a quadratic prior centered at
(µa − µa)/2 which is concave between 0 and µa − µe:

(1) P (p) ∝
{
a(µa − µe)

2 + (p− (µe − µa)/2)2
}

where a is a scale parameter controlling the ‘flatness’ of the prior (see Fig. 1). The value of p which
maximizes the posterior can thus be found by evaluating the log posterior log(P (~y|p)) + log(P (p))
for various values of p and a. Here, we report the results of simulations where we assumed F1 values
of 730 for /a/ and 530 for /e/, and considered a range of priors (by varying a) for both a case of
little coarticulation in the population (p0 ∼ N (10, 10)) as well as a case of an extreme degree of
coarticulation (p0 ∼ N (100, 10)). The results (Fig. 3) illustrate how both stability and change are
possible under this regime, depending on the flatness of the prior, but that crucially, ‘intermediate’
states of coarticulation do not emerge. With a steep prior (a = 0.01), the population tends to eschew
coarticulation; with a shallower prior (a = 0.5), a population where p0 = 10 stays stable (with little
coarticulation), while a population where p0 = 100 oscillates between full and no coarticulation; with



a very shallow prior (a = 0.99), we observe a roughly sigmoidal shift to full coarticulation (i.e. vowel
harmony). Note that the population-level variance of p stays stable over time.

Conclusions Our results suggest that simple models of sound change based on accumulation of error
are inadequate at the population level, but that including biases towards attractor states—in this case,
either full coarticulation or no coarticulation—allows us to to model both stability and change. That
we observe bifurcations in the population dynamics suggests that this approach may be an appropriate
strategy for modeling changes to continuous as well as the discrete parameters considered in previ-
ous work [7]. We suggest that while misapprehension may still play a role in the actuation of sound
change, its effects are attenuated by the distribution of priors in the population.

(a) (b) (c)

Figure 2: (a) Iterated learning. Each agent receives input from a single teacher, and each agent acts as both teacher and
learner. (b) Social learning from a single teacher. The input for each learner comes from a single teacher, but the same
teacher may supply input to multiple learners. (c) Social learning from multiple teachers. Here, input may come from
multiple teachers, although some teachers may not provide data to any learners in the following generation.
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Social learning, multiple teachers

Figure 3: Stability and change in social learning with
multiple teachers over 1000 generations. Blue line gives
mean value of p for that generation, with variance shown
in grey. Left column: p0 ∼ N (10, 10); right column:
p0 ∼ N (100, 10).
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